
Prepare for what *Loom*s ahead

Prepare for what
*Loom*s ahead

Dr Heinz M. Kabutz
Last updated 2020-10-29

© 2020 Heinz Kabutz – All Rights Reserved

1

Prepare for what *Loom*s ahead

Why do we need Virtual Threads?
! Asynchronous code is hard to debug

! 1-to-1 Java thread to native thread does not scale

! Welcome to Project Loom
– Millions of virtual threads in a single JVM
– Supported by networking, java.util.concurrent, etc.

• Anywhere you would block a thread

2

Prepare for what *Loom*s ahead

Best Deal Search
! Our webpage server requires 4 steps

1. Scan request for search terms
2. Search partner websites
3. Create advertising links
4. Collate results from partner websites

! We can reorder some steps without affecting result

3

Prepare for what *Loom*s ahead

Sequential Best Deal Search
! Sequential processing is the simplest

4

public void renderPage(HttpRequest request) {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 List<SearchResult> results = terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .collect(Collectors.toList());
 createAdvertisingLinks(request); // 3
 results.forEach(this::collateResult); // 4
}

42.5 seconds

Prepare for what *Loom*s ahead

Page Renderer with Future
! Search partner sites in the background with Callable

– We might get better performance this way
– If we are lucky, search results are ready when we need them

5

Prepare for what *Loom*s ahead

Searching in Background Thread
public class FutureRenderer extends BasicRenderer {
 private final ExecutorService executor;

 public FutureRenderer(ExecutorService executor) {
 this.executor = executor;
 }

 public void renderPage(HttpRequest request)
 throws ExecutionException, InterruptedException {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 Callable<List<SearchResult>> task = () ->
 terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .collect(Collectors.toList());
 Future<List<SearchResult>> results = executor.submit(task);
 createAdvertisingLinks(request); // 3
 results.get().forEach(this::collateResult); // 4
 }
}

6

40.5 seconds

Prepare for what *Loom*s ahead

CompletableFuture
! Convert each step into a CompletableFuture

– Then combine these using allOf()
– Code is faster, but a whole lot more complicated

• Need separate pools for CPU and IO bound tasks

7

Prepare for what *Loom*s ahead

renderPage() with CompletableFuture
public class RendererCF extends BasicRenderer {
 private final ExecutorService renderPool;
 private final ExecutorService downloadPool;

 public RendererCF(ExecutorService renderPool,
 ExecutorService downloadPool) {
 this.renderPool = renderPool;
 this.downloadPool = downloadPool;
 }

 public void renderPage(HttpRequest request) {
 renderPageCF(request).join();
 }
 public CompletableFuture<Void> renderPageCF(HttpRequest request) {
 return CompletableFuture.allOf(createAdvertisingLinksCF(request),
 scanSearchTermsCF(request)
 .thenCompose(this::searchAndCollateResults));
 }

 private CompletableFuture<Void> createAdvertisingLinksCF(
 HttpRequest request) {
 return CompletableFuture.runAsync(
 () -> createAdvertisingLinks(request), renderPool);
 }

8

Prepare for what *Loom*s ahead

searchAndCollateResults()
 private CompletableFuture<List<SearchTerm>> scanSearchTermsCF(
 HttpRequest request) {
 return CompletableFuture.supplyAsync(
 () -> scanForSearchTerms(request), renderPool);
 }

 private CompletableFuture<Void> searchAndCollateResults(
 List<SearchTerm> list) {
 return CompletableFuture.allOf(
 list.stream()
 .map(this::searchAndCollate)
 .toArray(CompletableFuture<?>[]::new)
);
 }

 private CompletableFuture<Void> searchAndCollate(SearchTerm term) {
 return searchOnPartnerSiteCF(term).thenCompose(this::collateResultCF);
 }

9

Prepare for what *Loom*s ahead

Tasks Wrapped in CompletableFutures
 private CompletableFuture<SearchResult> searchOnPartnerSiteCF(
 SearchTerm term) {
 return CompletableFuture.supplyAsync(
 term::searchOnPartnerSite, downloadPool);
 }

 private CompletableFuture<Void> collateResultCF(SearchResult data) {
 return CompletableFuture.runAsync(
 () -> collateResult(data), renderPool);
 }
}

10

8.5 seconds

Prepare for what *Loom*s ahead

Small Surprise Gift
! https://tinyurl.com/jdconf

– Offer expires at the end of my talk

11

Prepare for what *Loom*s ahead

Virtual Threads
! Lightweight, less than 1 kilobyte

! Fast to create

! Over 23 million virtual threads in 16 GB of memory

! Executed by carrier threads
– Scheduler is currently a ForkJoinPool

• Carriers are by default daemon threads
• # threads is Runtime.getRuntime().availableProcessors()

– Can temporarily increase due to ManagedBlocker

– Moved off carrier threads when blocking on IO
• Also with waiting on synchronizers from java.util.concurrent

12

! tinyurl.com/jdconf

Prepare for what *Loom*s ahead

Let's go back to SingleThreadedRenderer
! If threads are unlimited and free, why not create a

new virtual thread for every task?

! This is how our single-threaded renderer looked

13

public void renderPage(HttpRequest request) {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 List<SearchResult> results = terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .collect(Collectors.toList());
 createAdvertisingLinks(request); // 3
 results.forEach(this::collateResult); // 4
}

! tinyurl.com/jdconf

Prepare for what *Loom*s ahead

Virtual threads galore
public void renderPage(HttpRequest request)
 throws InterruptedException {
 Thread createAdvertisingThread =
 Thread.startVirtualThread(
 () -> createAdvertisingLinks(request)); // 3
 Collection<Thread> searchAndCollateThreads =
 scanForSearchTerms(request).stream() // 1
 .map(term -> Thread.startVirtualThread(// 2 & 4
 () -> collateResult(term.searchOnPartnerSite())))
 .collect(Collectors.toList());
 createAdvertisingThread.join();
 for (Thread searchThread : searchAndCollateThreads)
 searchThread.join();
}

14

4.5 seconds

Prepare for what *Loom*s ahead

How to create virtual threads
! Individual threads

– Thread.startVirtualThread(Runnable)
– Thread.builder().task(Runnable).virtual().start()

! ExecutorService
– Executors.newVirtualThreadExecutor()
– ExecutorService is now AutoCloseable

• close() calls shutdown() and awaitTermination()

15

Prepare for what *Loom*s ahead

Structured Concurrency
public void renderPage(HttpRequest request) {
 try (ExecutorService mainPool =
 Executors.newVirtualThreadExecutor()) {
 mainPool.submit(() -> createAdvertisingLinks(request)); // 3
 mainPool.submit(() -> {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 try (ExecutorService searchAndCollatePool =
 Executors.newVirtualThreadExecutor()) {
 terms.forEach(term -> searchAndCollatePool.submit(// 2 & 4
 () -> collateResult(term.searchOnPartnerSite())));
 }
 });
 }
}

16

4.5 seconds

Prepare for what *Loom*s ahead

ManagedBlocker
! ForkJoinPool makes more threads when blocked

– ForkJoinPool is configured with desired parallelism

! Uses in the JDK
– Java 7: Phaser
– Java 8: CompletableFuture
– Java 9: Process, SubmissionPublisher
– Java 14: AbstractQueuedSynchronizer

• ReentrantLock, ReentrantReadWriteLock, CountDownLatch,
Semaphore

– Loom: LinkedTransferQueue, SynchronousQueue,
SelectorImpl

17

Prepare for what *Loom*s ahead

ManagedBlocker
! Might need to update our code base

– Ideally we should never block a thread with native methods
– If we cannot avoid it, wrap the code in a ManagedBlocker

18

Prepare for what *Loom*s ahead

Java IO Implementation Rewritten
! JEP353 Reimplement Legacy Socket API

– PlainSocketImpl replaced by NioSocketImpl
– https://openjdk.java.net/jeps/353

! JEP373 Reimplement Legacy DatagramSocket API
– https://openjdk.java.net/jeps/373

19

Prepare for what *Loom*s ahead

Synchronized ⇒ ReentrantLock
! synchronized/wait is not yet compatible with Loom

– Virtual thread will stall the underlying carrier thread

20

Object monitor = new Object();
for (int i = 0; i < Runtime.getRuntime().availableProcessors(); i++) {
 Thread.startVirtualThread(() -> {
 synchronized (monitor) {
 try {
 monitor.wait();
 } catch (InterruptedException ignore) {}
 }
 });
}
Thread.startVirtualThread(() -> System.out.println("done")).join();

no output

Prepare for what *Loom*s ahead

Synchronized ⇒ ReentrantLock
! We might need to migrate our synchronized code to

– ReentrantLock
– StampedLock

! In both cases, idioms are more complicated
– But compatible with virtual threads

21

Prepare for what *Loom*s ahead

Biased Locking Turned Off
! ConcurrentHashMap uses synchronized

– Earlier versions used ReentrantLock

! Uncontended ConcurrentHashMap in Java 15 is
measurably slower

– -XX:+UseBiasedLocking to enable it again
– Please report if turning it on makes a big difference

22

Prepare for what *Loom*s ahead

Rather do not use ThreadLocal
! Virtual threads support ThreadLocal by default

– However, it is costly
– Virtual threads not reused

• ThreadLocals often do not make sense

! Better to use ScopedVariables
– Or shared immutable objects

23

Prepare for what *Loom*s ahead

Cost of old IO Streams
! Benefit of Virtual Threads, is we can use the old

java.io.InputStream and java.io.Reader
– As opposed to java.nio Channel and Buffer

! But, they actually use a lot of memory

24

Prepare for what *Loom*s ahead

Memory overhead of IO Streams

25

OutputStream InputStream Writer Reader

Print 25064 80

Buffered 8312 8296 16480 16496
Data 80 328

File 176 176 8608 8552

GZIP 768 1456

Object 2264 2256

Adapter 8480 8424

Prepare for what *Loom*s ahead

Education is Key
! Concurrency Specialist Course

– https://www.javaspecialists.eu/courses/concurrency/

! Only Java concurrency course officially endorsed by
Brian Goetz, author of Java Concurrency in Practice

! Taught remotely anywhere in the world

! Includes all the latest Java concurrency constructs
– Virtual threads and Project Loom on request

! Don't forget gift: tinyurl.com/jdconf

26

Prepare for what *Loom*s ahead

Questions?

Twitter: @heinzkabutz

27

! tinyurl.com/jdconf

